Sclerotome development and peripheral nervous system segmentation in embryonic zebrafish.

نویسندگان

  • E M Morin-Kensicki
  • J S Eisen
چکیده

Vertebrate embryos display segmental patterns in many trunk structures, including somites and peripheral nervous system elements. Previous work in avian embryos suggests a role for somite-derived sclerotome in segmental patterning of the peripheral nervous system. We investigated sclerotome development and tested its role in patterning motor axons and dorsal root ganglia in embryonic zebrafish. Individual somite cells labeled with vital fluorescent dye revealed that some cells of a ventromedial cell cluster within each somite produced mesenchymal cells that migrated to positions expected for sclerotome. Individual somites showed anterior/posterior distinctions in several aspects of development: (1) anterior ventromedial cluster cells produced only sclerotome, (2) individual posterior ventromedial cluster cells produced both sclerotome and muscle, and (3) anterior sclerotome migrated earlier and along a more restricted path than posterior sclerotome. Vital labeling showed that anterior sclerotome colocalized with extending identified motor axons and migrating neural crest cells. To investigate sclerotome involvement in peripheral nervous system patterning, we ablated the ventromedial cell cluster and observed subsequent development of peripheral nervous system elements. Primary motor axons were essentially unaffected by sclerotome ablation, although in some cases outgrowth was delayed. Removal of sclerotome did not disrupt segmental pattern or development of dorsal root ganglia or peripheral nerves to axial muscle. We propose that peripheral nervous system segmentation is established through interactions with adjacent paraxial mesoderm which develops as sclerotome in some vertebrate species and myotome in others.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuropilin-mediated neural crest cell guidance is essential to organise sensory neurons into segmented dorsal root ganglia.

The peripheral nervous system (PNS) of higher vertebrates is segmented to align the spinal nerve roots with the vertebrae. This co-patterning is set up during embryogenesis, when vertebrae develop from the sclerotome layer of the metameric somites, and PNS neurons and glia differentiate from neural crest cells (NCCs) that preferentially migrate into the anterior sclerotome halves. Previous anal...

متن کامل

Development of segmentation in zebrafish.

Recent findings on the nature and origin of segmentation in zebrafish, Brachydanio rerio, are reviewed. Segmented peripheral tissues include the trunk and tail myotomes, that are derived from somitic mesoderm, and the pharyngeal arches that are derived from head mesoderm in addition to other sources. Two major regions of the central nervous system, the spinal cord and hindbrain, are also segmen...

متن کامل

Neuropilin receptors guide distinct phases of sensory and motor neuronal segmentation.

The segmented trunk peripheral nervous system is generated by ventrally migrating neural crest cells that exclusively invade the anterior sclerotome and differentiate into metameric dorsal root and sympathetic ganglia. Meanwhile, ventral spinal motor axons also project through the somites in a segmental fashion. How peripheral nervous system segmentation is generated is unknown. We previously s...

متن کامل

Segmental relationship between somites and vertebral column in zebrafish.

The segmental heritage of all vertebrates is evident in the character of the vertebral column. And yet, the extent to which direct translation of pattern from the somitic mesoderm and de novo cell and tissue interactions pattern the vertebral column remains a fundamental, unresolved issue. The elements of vertebral column pattern under debate include both segmental pattern and anteroposterior r...

متن کامل

Somite development in zebrafish.

A full understanding of somite development requires knowledge of the molecular genetic pathways for cell determination as well as the cellular behaviors that underlie segmentation, somite epithelialization, and somite patterning. The zebrafish has long been recognized as an ideal organism for cellular and histological studies of somite patterning. In recent years, genetics has proven to be a ve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 124 1  شماره 

صفحات  -

تاریخ انتشار 1997